
PostgreSQL extendability: Origins and new horizonts
Towards pluggable storage engines

Alexander Korotkov

Postgres Professional

2016

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 1 / 39

How access method was designed by Berkeley?

▶ It is some abstracƟon which provides the way to scan the table.
IniƟally heap was just one of access methods.

▶ Now heap is built-in too deep. In fact there is no abstracƟon: primary
storage of table is always heap.

▶ Now there are two other ways to retrieve tuples: FDW and custom
nodes. By the nature they could be access methods, but by design
they aren’t.

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 2 / 39

What is index access method?

Heap

Page

ro
w

ro
w

ro
w

ro
w

ro
w

Access method

provided index

Page

ro
w

ro
w

ro
w

ro
w

ro
w

Page

ro
w

ro
w

ro
w

ro
w

ro
w

Index scan

Scan keys

TID

TID

TID

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 3 / 39

What is index access method?

▶ It is some abstracƟon which provide us indexes using given
documented API: http:
//www.postgresql.org/docs/9.5/static/indexam.html.

▶ Index is something that can provide us set of tuples TIDs saƟsfying
some set of restricƟons faster than sequenƟal scan of heap can do
this.

▶ Internally most of indexes are kind of trees. But it is not necessary so.
HASH and BRIN are examples of in-core non-tree index AM.

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 4 / 39

http://www.postgresql.org/docs/9.5/static/indexam.html
http://www.postgresql.org/docs/9.5/static/indexam.html

Which non-index access methods could be?

▶ SequenƟal access methods: implement complex strategies for generaƟon of
distributed sequences.

▶ http://www.postgresql.org/message-id/CA+
U5nMLV3ccdzbqCvcedd-HfrE4dUmoFmTBPL_uJ9YjsQbR7iQ@mail.gmail.com

▶ Columnar access methods: implement columnar storage of data.
▶ http:

//www.postgresql.org/message-id/20150611230316.GM133018@postgresql.org
▶ http://www.postgresql.org/message-id/20150831225328.GM2912@alvherre.pgsql

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 5 / 39

http://www.postgresql.org/message-id/CA+U5nMLV3ccdzbqCvcedd-HfrE4dUmoFmTBPL_uJ9YjsQbR7iQ@mail.gmail.com
http://www.postgresql.org/message-id/CA+U5nMLV3ccdzbqCvcedd-HfrE4dUmoFmTBPL_uJ9YjsQbR7iQ@mail.gmail.com
http://www.postgresql.org/message-id/20150611230316.GM133018@postgresql.org
http://www.postgresql.org/message-id/20150611230316.GM133018@postgresql.org
http://www.postgresql.org/message-id/20150831225328.GM2912@alvherre.pgsql

Why access method extendability?

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 6 / 39

Postgres was designed so...

”It is imperaƟve that a user be able to construct new access methods to
provide efficient access to instances of nontradiƟonal base types”
Michael Stonebraker, Jeff Anton, Michael Hirohama.
Extendability in POSTGRES , IEEE Data Eng. Bull. 10 (2) pp.16-23, 1987

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 7 / 39

How did we loose it?

▶ Other object of system catalog received CREATE/ALTER/DROP
commands while access methods didn’t.

▶ When WAL was introduced, it came with fixed table of resource
managers. Loaded module can’t add its own resource manager.

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 8 / 39

People want bleeding-edge features...

▶ Fast FTS was presented in 2012, but only 2 of 4 GIN improvements
are commiƩed yet.

▶ Fast-write indexes are arriving: LSM/Fractal Trees, COLA etc.

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 9 / 39

https://wiki.postgresql.org/images/2/25/Full-text_search_in_PostgreSQL_in_milliseconds-extended-version.pdf

Fast FTS for 9.3...

Without patch With patch Sphinx
Table size 6.0 GB 6.0 GB
Index size 1.29 GB 1.27 GB 1.12 GB
Index build Ɵme 216 sec 303 sec 180 sec
Queries in 8 hours 3,0 mln. 42.7 mln. 32.0 mln

Only 2 of 4 GIN improvements are commiƩed yet. GIN isn’t yet as cool as we wish yet.

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 10 / 39

Cache Oblivious Lookahead Array (COLA)

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 11 / 39

New access method interface

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 12 / 39

How does access method interface look like?

In the docs
IndexBuildResult *ambuild (Relation heapRelation, Relation indexRelation,

IndexInfo *indexInfo);
void ambuildempty (Relation indexRelation);
bool aminsert (Relation indexRelation, Datum *values,

bool *isnull, ItemPointer heap_tid,
Relation heapRelation, IndexUniqueCheck checkUnique);

IndexBulkDeleteResult *ambulkdelete (IndexVacuumInfo *info,
IndexBulkDeleteResult *stats, IndexBulkDeleteCallback callback,
void *callback_state);

...

In the system catalog
internal btbuild(internal, internal, internal)
void btbuildempty(internal)
boolean btinsert(internal, internal, internal, internal, internal, internal)
internal btbulkdelete(internal, internal, internal, internal)
...

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 13 / 39

What is the problem with access method interface?

▶ Most of datatypes used in arguments and return values are C-structures and
pointers. These datatypes don’t have SQL-equivalents. This is why they are declared
as ”internal”.

▶ None of interface funcƟons are going to be SQL-callable. None of them are going to
be implemented not in C.

▶ Once we have extendable access methods, interface may change. We could have
extra difficulƟes with, for instance, addiƟonal ”internal”which is to be added to
funcƟon signature.

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 14 / 39

Another approach: handlers

Handler hide all guts from SQL.
CREATE FOREIGN DATA WRAPPER file HANDLER file_fdw_handler;

Datum
file_fdw_handler(PG_FUNCTION_ARGS)
{

FdwRoutine *fdwroutine = makeNode(FdwRoutine);

fdwroutine->GetForeignRelSize = fileGetForeignRelSize;
fdwroutine->GetForeignPaths = fileGetForeignPaths;
fdwroutine->GetForeignPlan = fileGetForeignPlan;

...
fdwroutine->EndForeignScan = fileEndForeignScan;
fdwroutine->AnalyzeForeignTable = fileAnalyzeForeignTable;

PG_RETURN_POINTER(fdwroutine);
}

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 15 / 39

Access method handlers

If we would have access method handlers like this
Datum
bthandler(PG_FUNCTION_ARGS)
{

IndexAmRoutine *amroutine = makeNode(IndexAmRoutine);
amroutine->amstrategies = 5;
amroutine->amsupport = 2;
amroutine->amcanorder = true;

....................................
amroutine->aminsert = btinsert;
amroutine->ambeginscan = btbeginscan;
amroutine->amgettuple = btgettuple;

....................................
PG_RETURN_POINTER(amroutine);

}

then it would be easy to define new access method
CREATE ACCESS METHOD btree HANDLER bthandler;

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 16 / 39

pg_am

Before:
Column | Type | Modifiers

-----------------+----------+-----------
amname | name | not null
amstrategies | smallint | not null
amsupport | smallint | not null
amcanorder | boolean | not null
amcanorderbyop | boolean | not null
amcanbackward | boolean | not null
amcanunique | boolean | not null
amcanmulticol | boolean | not null
amoptionalkey | boolean | not null
amsearcharray | boolean | not null
amsearchnulls | boolean | not null

...........20 more columns..............

AŌer:
Column | Type | Modifiers

-----------+---------+-----------
amname | name | not null
amhandler | regproc | not null

pg_am becomes suitable to store other access methods: sequenƟal,
columnar etc.

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 17 / 39

Access method procedures signatures

Before:
Datum
btinsert(PG_FUNCTION_ARGS)

AŌer:
bool
btinsert(Relation rel, Datum *values, bool *isnull,

ItemPointer ht_ctid, Relation heapRel,
IndexUniqueCheck checkUnique)

Signatures of access method procedures becomes more meaningful.

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 18 / 39

Operator classes validaƟon

There were some regression tests which rely on exposing index access
method in pg_am.
-- Cross-check amprocnum index against parent AM

SELECT p1.amprocfamily, p1.amprocnum, p2.oid, p2.amname
FROM pg_amproc AS p1, pg_am AS p2, pg_opfamily AS p3
WHERE p1.amprocfamily = p3.oid AND p3.opfmethod = p2.oid AND

p1.amprocnum > p2.amsupport;

Now opclasses validaƟon is up to index access method.
/* validate oplass */
typedef void
(*amvalidate_function) (OpClassInfo *opclass);

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 19 / 39

New access method interface status

CommiƩed!
http://git.postgresql.org/gitweb/?p=postgresql.git;a=

commit;h=65c5fcd353a859da9e61bfb2b92a99f12937de3b

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 20 / 39

http://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=65c5fcd353a859da9e61bfb2b92a99f12937de3b
http://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=65c5fcd353a859da9e61bfb2b92a99f12937de3b

Why do we need
CREATE ACCESS METHOD command?

Could we be saƟsfied with this?
INSERT INTO pg_am (

amname,
amhandler

) VALUES (
’bloom’,
’blhandler’

);

No, because pg_upgrade will wash that away. We need command like this
with pg_dump support.
-- Access method
CREATE ACCESS METHOD bloom HANDLER blhandler;

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 21 / 39

Reliability problems of custom access methods

▶ AM can crash during index search, build or insert. Opclass can behave
the same, not AM-specific problem.

▶ AM can corrupt index and/or give wrong answers to queries. Opclass
can behave the same, not AM-specific problem.

▶ AM can crash during vacuum. Autovacuum could run into cycle of
crashes. That is AM-specific problem.

▶ AM can crash in WAL replay during recovery or replicaƟon. That is
AM-specific problem.

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 22 / 39

Vacuum problem

▶ Vacuum crash isn’t any worse than crash during index search, build or
insert.

▶ Cycle autovacuum crash is worse because it doesn’t require explicit
user acƟons.

▶ We can mark custom indexes with some flag on crash in vacuum.
Then autovacuum will skip it unƟl user explicitly unset this flag.

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 23 / 39

WAL redo funcƟons

src/include/access/rmgrlist.h

PG_RMGR(RM_XLOG_ID, ”XLOG”, xlog_redo, xlog_desc, xlog_identify, NULL, NULL)
PG_RMGR(RM_XACT_ID, ”Transaction”, xact_redo, xact_desc, xact_identify, NULL, NULL)
PG_RMGR(RM_SMGR_ID, ”Storage”, smgr_redo, smgr_desc, smgr_identify, NULL, NULL)
PG_RMGR(RM_CLOG_ID, ”CLOG”, clog_redo, clog_desc, clog_identify, NULL, NULL)
PG_RMGR(RM_DBASE_ID, ”Database”, dbase_redo, dbase_desc, dbase_identify, NULL, NULL)
PG_RMGR(RM_TBLSPC_ID, ”Tablespace”, tblspc_redo, tblspc_desc, tblspc_identify, NULL, NULL)
PG_RMGR(RM_MULTIXACT_ID, ”MultiXact”, multixact_redo, multixact_desc, multixact_identify, NULL, NULL)
PG_RMGR(RM_RELMAP_ID, ”RelMap”, relmap_redo, relmap_desc, relmap_identify, NULL, NULL)
PG_RMGR(RM_STANDBY_ID, ”Standby”, standby_redo, standby_desc, standby_identify, NULL, NULL)
..

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 24 / 39

WAL problem

▶ WAL replay is criƟcal for reliability because it is used for both
recovery, conƟnuous archiving and streaming replicaƟon. This is why
making WAL replay depend on custom extension is not an opƟon.

▶ Universal generic WAL format could be an opƟon. It should do
maximum checks before wriƟng WAL-record in order to exclude error
during replay.

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 25 / 39

Generic WAL interface

Custom access method in extension should make generic WAL records as following.

▶ GenericXLogStart(index) – start usage of generic WAL for specific relaƟon.
▶ GenericXLogRegister(buffer, false) – register specific buffer for generic

WAL record. Second argument indicaƟng new buffer.
▶ GenericXLogFinish() or GenericXLogAbort() – write generic WAL record or

abort with reverƟng page state.

Generic xlog takes care about criƟcal secƟon, unlogged relaƟon, seƫng lsn, making
buffer dirty. User code is just simple and clear.

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 26 / 39

Generic WAL usage example (1/2):
Init bloom metapage

/* initialize the meta page */
metaBuffer = BloomNewBuffer(index);
GenericXLogStart(index);
GenericXLogRegister(metaBuffer, true);
BloomInitMetabuffer(metaBuffer, index);
GenericXLogFinish();
UnlockReleaseBuffer(metaBuffer);

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 27 / 39

Generic WAL usage example (2/2):
Try to insert new item to the page

buffer = ReadBuffer(index, blkno);
LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
GenericXLogStart(index);
GenericXLogRegister(buffer, false);
if (BloomPageAddItem(&blstate, BufferGetPage(buffer), itup))

/* Item was successfully added: finish WAL record */
GenericXLogFinish();

else
/* Item wasn’t added: abort WAL record */
GenericXLogAbort();

UnlockReleaseBuffer(buffer);

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 28 / 39

Complete example: bloom filter index (1/2)

CREATE TABLE tst AS (
SELECT (random()*100)::int AS i,

substring(md5(random()::text), 1, 2) AS t
FROM generate_series(1, 1000000));

EXPLAIN (ANALYZE, BUFFERS) SELECT * FROM tst
WHERE i = 16 AND t = ’af’;

Seq Scan on tst (cost=0.00..19425.00 rows=25 width=36)
(actual time=0.285..74.322 rows=31 loops=1)

Filter: ((i = 16) AND (t = ’af’::text))
Rows Removed by Filter: 999969
Buffers: shared hit=192 read=4233

Planning time: 0.156 ms
Execution time: 74.354 ms

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 29 / 39

Complete example: bloom filter index (2/2)

CREATE INDEX tst_i_t_idx ON tst USING bloom (i, t)
WITH (col1 = 5, col2 = 11);

EXPLAIN (ANALYZE, BUFFERS) SELECT * FROM tst
WHERE i = 16 AND t = ’af’;

Bitmap Heap Scan on tst (cost=17848.01..17942.74 rows=25 width=36)
(actual time=4.705..4.948 rows=31 loops=1)

Recheck Cond: ((i = 16) AND (t = ’af’::text))
Heap Blocks: exact=31
Buffers: shared hit=1962 read=30
-> Bitmap Index Scan on tst_i_t_idx

(cost=0.00..17848.00 rows=25 width=0)
(actual time=4.650..4.650 rows=31 loops=1)

Index Cond: ((i = 16) AND (t = ’af’::text))
Buffers: shared hit=1961

Planning time: 0.211 ms
Execution time: 5.000 ms

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 30 / 39

CREATE ACCESS METHOD +
generic WAL + bloom contrib

▶ Patch is on the commiƞest
https://commitfest.postgresql.org/6/353/.

▶ Got some review.
▶ Hopefully will be commiƩed to 9.6.

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 31 / 39

https://commitfest.postgresql.org/6/353/

Pluggable heap?

Could we replace heap a well?
Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 32 / 39

Pluggable table engines concept

Owns
▶ Ways to scan and modify.
▶ Access methods implementaƟons.

Other wise it wouldn’t be disƟnct pluggable table engines.

Shares
▶ TransacƟons, snapshots.
▶ WAL.

Other wise it wouldn’t be part of PostgreSQL.

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 33 / 39

Why table engine is not just FDW?

▶ AM – one can’t CREATE INDEX on access method.
▶ WAL – FDWs are not WAL-logged.
▶ VACUUM – FDWs don’t need VACUUMing.
▶ File node – FDWs don’t have regular way to associate files with them.

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 34 / 39

Index access methods and table engines

Table engines have their own index access methods implementaƟons. But
sharing opclasses would be useful. Everything related to opclass
validaƟon leaves in pg_am. Everything related to scan, build, insert etc
goes to pg_am_impl – only table engine deals with that.

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 35 / 39

Table engines and WAL

▶ Generic WAL records could be soluƟon for some cases.
▶ In other cases, custom redo funcƟons are definitely needed. For
instance, in-memory tables with persistence. On-disk representaƟon:
snapshot + logical deltas(in WAL).

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 36 / 39

Table engines and VACUUM

▶ Not mandatory. Some table engines wouldn’t need VACUUM.
▶ Track relminmxid and relfrozenxid if xids are used.
▶ Table engines are responsible for its indexes VACUUM as well.

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 37 / 39

Future

Pluggable everything!

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 38 / 39

Thank you for aƩenƟon!

Alexander Korotkov PostgreSQL extendability: Origins and new horizonts 39 / 39

